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Resolution properties of B-spline and compact finite difference schemes are com-
pared using Fourier analysis in periodic domains, and tests based on solution of
the wave and heat equations in finite domains, with uniform and nonuniform grids.
Results show that compact finite difference schemes have a higher convergence
rate and in some cases better resolution. However, B-spline schemes have a more
straightforward and robust formulation, particularly near boundaries on nonuniform
meshes. (© 2001 Elsevier Science
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1. INTRODUCTION

Many physical phenomena involve a broad range of spatial scales. One example is
bulent fluid flows, which have a wide and continuous spectrum of length scales describ
its composition of eddies of different sizes [2]. Simulation of these physical phenome
requires spatial discretization schemes with high resolution, or in other words, schemes
can produce accurate numerical results over as broad a range of length scales as po
for a given discretization.

In numerical simulation of turbulent fluid flows, spectral methods are attractive spat
discretization schemes due to their very good resolution properties. As a result, many
rect numerical simulations (DNS) have been performed with spectral methods in Carte:
coordinates with various boundary conditions [4, 14]. These include simulations of sim|
fundamental flows such as isotropic turbulence, turbulent channel flows [20], and turbul
boundary layers [35]. One distinctive feature of spectral methods is that they use infinit
differentiable global basis functions [4]. Two common choices are Fourier series expansi
and polynomial basis functions, with the first being applied to simulations with period
boundary conditions and the second to simulations in finite intervals [20, 30]. However,
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global character of the basis functions also limits spectral methods to simple geome
and boundary conditions [24], and there is a great need for simulations in complex geo
tries. This is very important if turbulence simulations are to contribute to many engine
ing applications such as external aerodynamics and propulsion systems. Such simula
would require spatial discretization schemes that not only retain the good resolution pt
erties of spectral methods, but also provide flexibility with respect to geometries and ¢
distribution.

Local numerical representations, such as finite difference and finite element scher
have much greater flexibility in discretizing complex geometries, so high resolution scher
of these types would be of great interest. For example, Lele has studied compact fi
difference schemes for use in problems with a broad range of spatial scales [24], u:
Fourier analysis to investigate how well the schemes represent a range of wavenuml
There has also been a trend to combine local discretization algorithms and spectral mett
A typical example of such a confluence of numerical algorithms is the spectral elem
method, which is based on finite element and spectral methods [18, 19, 29].

Another choice forlocal numerical representationis to use splines. Unlike finite differer
methods, spline methods are functional expansion methods that make use of a st
local basis functions. This property provides us with a straightforward way to impl
ment boundary conditions. Spline methods are similar to finite element methods as t
both use piecewise polynomial representations. However, spline methods use basis |
tions that retain a higher degree of continuity. In short, spline methods have much
the flexibility afforded by the use of local expansions, as in finite elements, and he
the resolution advantage afforded by highly continuous expansions, as in spec
methods.

Inthe research reported here, we investigate the properties of spline methods, in parti
spline collocation methods, and their relation to finite difference and finite element methc
Section 2 introduces the basic properties of spline, compact finite difference, finite elen
methods, and their different formulations. The basic resolution properties of these sps
discretization schemes are presented in Section 3 using Fourier analysis in periodic dom
Of particular interest are the approximations to the first and second derivative opere
which are common in equations describing many physical phenomena. In Sections 4
5, the first-order wave equation and heat equation are solved with spline collocation
compact finite difference schemes in bounded domains, in both uniform and nonunifc
grids. Concluding remarks are given in Section 6.

2. NUMERICAL REPRESENTATIONS

The resolution properties of the numerical methods discussed here are most easily
derstood in one spatial dimension. Thus, the methods to be evaluated are introduced he
their one-dimensional form. Spline methods, compact finite difference methods, and fi
element methods will be discussed.

2.1. Spline Methods

Consider a domain divided intd intervals, a one-dimensional spline is defined to be :
polynomial of degreel in each interval that is continuously differentiallle- 1 times at
the interval boundaries. The boundaries of the intervals are called knots.
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FIG. 1. B-splinesBY(x) on uniform knots with knot spacingx = 1, with (8) d = 0, 1, 2, and 3; and with
(byd=2andi =1, 2and 3.

Spline methods have been used before to solve differential equations and fluid meche
problems [13, 31, 32]. The work of Kasi Viswanadham and Koneru [39] and Davies [6,
used B-splines as basis functions and the Galerkin formulation. Most of the reseal
however, is confined to cubic splines £ 3). More recently, Kravchenket al. [22] and
Shariff and Moser [34] used the basis functions of splines to solve partial different
equations and simulate turbulent fluid flows. In particular, mesh embedding techniques
developed to make basis spline methods very effective in solving physical problems
complex geometries.

To use splines as a representation for the solution of a partial differential equation, i
necessary to have a convenient basis for the space of spline functions under consider:
Here the so-called basis splines or “B-splines” as described in [8] and [16] are used
B-spline is defined as a normalized spline which has support over the minimum poss
number of intervals. In fact, it has support on odly 1 intervals. As an example, B-splines
for uniformly spaced knots are plotted in Fig. 1adoup to 3. By using a basis with support
on the minimum possible number of intervals, minimum bandwidth of the resulting matric
is ensured.

Near a boundary, the basis splines are different than those in Fig. 1a since the pres
of the boundary removes the constraint that the B-splinesdhavé zero derivatives at the
edge of its interval of supports. An example of the quadratic B-splines near the bound
is shown in Fig. 1b.

To use the B-splines in a practical computation, one needs to evaluate them and t
derivatives at points in the domain. This will be sufficient to compute the various matric
representing different linear operators. An efficient and stable technique to evaluate
B-splines and their derivatives is the recurrence relation described in [8] (see Appendix
Both interior and boundary splines are generated this way by formally introducing a m
tiplicity of knots at the boundary (see [8] and Appendix A).

Consider the B-spline representation of a possibly nonlinear spatial op&rafmerating
on ¢. We first postulate an expansion fpiin terms of B-splines of ordett on a selected
knot set:

()~ () =D aBIX). (1)
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An approximationf' to the operatof is sought that maps splines  (i.e., ) to splines
in &, where$; is the space of splines of ordérfor the selected knot set. That is

F@) ~F@=7=> BBX. @)

There are several ways to generate such an approximation. Two will be considered t
namely Galerkin and collocation methods.

2.1.1. B-spline Galerkin Methods

In the Galerkin formulation, the approximation of the linear differential oper&iton ¢
is given by

(B 7)=(B!.D¢), j=12....N, ©)

where (f, g) denotes thé., inner product/ fg dxin the domain and\; is the number of
B-splines. This forces the error intd be orthogonal t&,, thus minimizing thel, error

in this space. Given the linearity @ and the representations D, ¢, andy”, the above
equation can be written

N, N,
S a(BLBY) =Y o (BY.D(BY). j=12....N,. @)
i=1 i=1

The inner products of Eq. (4) are the elements of matrideEnd D, with M;; = (B¢, BY)
and D;; = (BY, D(Bd)) The matrixM is called the “mass” matrix an® the operator
matrix. To obtain/"giveng, one solves the linear systedh3 = Da. Note that botiV and

D are banded matrices since individual B-splines have only local support. The bandwi
w of the matrices is given by = 2d + 1.

2.1.2. B-Spline Collocation Methods

The collocation formulation imposes different requirements to obtain the coeffigients
Here the approximatiop = >, §; Bid of the operatoD on ¢ must satisfy

)7:’D¢ atX:é‘], J:l,Z,,N;, (5)

which implies

N{
> BB = Za, D(BY) atx=¢j, j=12...,N,. (6)
i=1

The values of the B-splines and their derivatives are the elements of the mariaad
D, respectively, withM;; = BY(¢;) and Dij =[D(BH](¢;). Again, givens, 7 is found
by solving the linear systerM = D«. Using the collocation formulation, the matrix
bandwidthw is given byw = d for oddd.
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2.1.3. Selection of Knots and Collocation Points

To use B-splines in a computation, one first needs to determine the location of the k
points and for the collocation method the collocation points. In a periodic domain wi
N uniform width intervals, there arBl knots andN splines spanning the spline space.
Therefore,N collocation points are needed in a collocation scheme. There are only t
locations for the collocation points that preserve the spatial symmetry of the operatc
collocation points at the knots and collocation points at the center of the intervals. T
former is appropriate for odd-order splines, the latter for even.

In a nonperiodic domain, it is more complicated. ThereMrmtervals,N + 1 distinct
knots andN + d collocation points are needed. There are two basic ways to select kn
and collocation points in a finite domain. The first is that- d collocation points can be
selected by whatever resolution criteria are appropriate andNherl of these points can
be chosen to be the knots. Generally, those collocation points that are not knots are nee
boundary, though the knot at the boundary is retained. This is referred to as a “not-a-kr
condition, which is commonly used in spline interpolation.

The alternative is to start by selecting the knots according to some resolution crite
This is more natural since the knots directly determine the spline space and therefore
more closely related to resolution than the collocation points. Furthermore, in a Galer
scheme all one selects are the knots, so direct comparison of Galerkin and colloca
is only possible if one starts by selecting the knots. Selecting the collocation points ¢
then be done in several ways, but there are two choices that seem particularly appropr
place a collocation point at the maximum of each B-spline function or place it at tl
centroid of each B-spline function. These prescriptions have the advantage that they
applicable throughout the domain (nothing special about the boundary), and they asso
a collocation point directly with each B-spline function. This latter property is useful fc
applications in multidimensional embedded grids of the type described by Shariff and Mo
[34]. Note that with uniform knots away from the boundary, the symmetry of the B-splin
places the maxima and centroid at the same location: at the knots or at the center of
intervals for odd and even splines, respectively. In the current paper, collocation point:
the B-spline maxima are selected, because this naturally places a collocation point ai
boundary, which is useful for imposing boundary conditions. Two knot distributions a
used: uniformly spaced knots and nonuniform knots distribution according to

(N-De+1
X —0541_ w )
cos[7 5]

whereé = j/N for j =0, 1,...N. This nonuniform grid is basically a Chebyshev grid
with the boundary singularities removed. It is denser near the boundary.

2.2. Compact Finite Difference Methods

Compact finite difference schemes have long been applied to fluid mechanics and o
physics problems [17, 23, 33]. Recently, higher order compact finite difference scher
have seen increasing use in the direct numerical simulation of complex fluid flows [12, 2
Lele presented a comprehensive study on the compact finite difference methods |
Consider a uniform mesh where the nodes are indexed Bye independent variable
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at the nodes ig; and the function values at the nodgs= v(x;) are given. The compact
schemes are derived by writing approximations of the form:

Vi — Vi— Vi — Vi— Vi — Vji—
Bl ooy o v s+ Bufyp = et p b At

®)

Similarly, approximations to the second derivative operator are derived by the followi
relationship:

" a 4 4 14
Bui_p +avi_g + v +aviyy + Buiy,

Viy3 — 20 + Vi3 Vig2 — 20 + V2 Vig1 — 20 + Vi1
=cC b a . 9
9(AX)? + 4(AX)?2 + (AX)? ©)

The relations between the coefficietatsb, ¢, anda, 8 are obtained by matching the
Taylor series coefficients of various orders. Higher orders can be obtained by includ
more nodes in the above two equations.

Inthis study, compact schemes with the same stencil size on both sides of the equation
selected¢ = 0in Eqs. (8) and (9) for example). This is because mass and operator matri
with the same bandwidth is a property shared by B-spline methods. All the coefficie
then are used to match the Taylor series to as high an order as possible. The valt
the coefficients are listed in Tables | and Il for schemes with matrix bandwidtip
to 11. Schemes in which convergence order is sacrificed to improve resolution have
been proposed (see [24] and Table 1). Note that since no restriction is imposed on
coefficients other than those from Taylor series matching, mass matrices associated
the first, second, and higher derivatives are all different. This issue will be addresset
more detail in Section 6.

2.3. Finite Element Methods

Most of the finite element applications in fluid dynamics use the Galerkin finite eleme
formulation [11]. The application of finite element method to fluid mechanics is treated
Thomasset [37] and Baker [1].

In this study, one-dimensional finite elements withandCq_1),> continuity are used,
whered is the degree of polynomial€4_1/> continuity is the highest that can be imposed
while preserving the iso-parametric property of the elements. These are commonly ce
Hermite finite elements. As with B-splines, the finite elements are polynomials on a sel
of knots (element boundaries). However, because a lower order of continuity is impos
there are many more degrees of freedom per interval (element). If thei¢ etervals,
then there would bd N and% N degrees of freedom fd&@, andC -1, finite elements,
respectively. In this paper, only finite element Galerkin methods are considered, tho
collocation methods are also possible. Note that this method of increasing the local de
of the polynomial shape-function is very similar to thp"‘finite element method [10],
in which an element may neighbor an element having different polynomial order. T
main advantage of finite element methods with low order of continuity is flexibility witl
respect to geometry. In most applications of finite element methods, elements are typic
chosen to be at most quadratic [3, 9], and consequently, a high order of convergence i
achieved. This is exactly opposite to the characteristics of spectral methods. The intentic
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TABLE |
Table of Coefficients for Discretized First Derivative Operators Using Compact
Finite Difference Schemes

Band-width  Order a o o oy as
3 2 2.822510141559E-01 0 0 0 0
3 4 % 0 0 0 0
5 6 4.907480792180E-01 3.935368647117E-02 0 0 0
4 1
5 8 3 6 0 0 0
9 9 1
7 12 — — — 0 0
16 100 400
16 4 16 1
9 16 — — —_ —_— 0
25 25 1225 4900
n 2 2 100 s % 1
36 441 784 15876 63504
Band-width  Order =N a as a, as
3 2 1.564502028312E+00 0 0 0 0
3
3 4 > 0 0 0 0
5 6 1.450612391632E+00  6.09591139745939E-01 0 0 0
5 8 ﬁ) 2—5 0 0 0
27 54
7 12 E‘ E- —147 0 0
16 250 2000
9 16 &1 £2 10704 761 0
125 125 42875 85750
11 20 55 12760 5115 23045 7381
54 9261 10976 500094 8001504
Note.The approximations have the fo@:j o (fy + )+ = Zi a f'*;i;f" . For the second-order

tridiagonal and sixth-order pentadiagonal schemes, coefficients are chosen to increase 1% resolution
Section 3.2).

combine these two methods comprehensively leads to the development of spectral elel
methods [19, 29]. Spectral element methods are basically variational domain decompos
techniques. The computational domain is broken up into macro-elements within wh
variables are represented as high-order polynomial expansions [18]. The work of Pa
[29], Karniadakis [18], and their co-workers illustrates the application of spectral eleme
methods in partial differential equations and fluid mechanics problems.

2.4. Relationship to Other Approximations

There are a variety of other formulations for the first and second derivative (or equi
lent) that have not been covered here. Two that are of particular interest, due to their ¢
relationship to the compact finite difference methods, are the Fait¥ volume methods
discussed by Kobayashi [21] and the coupled derivative formulation of Mahesh [25].
the Padé finite volume scheme, a compact reconstruction operator is used to reconst
the values of the function being approximated on the volume boundaries, given the
averaged values of the functions. These are then the fluxes in a finite volume represe
tion of the convection equation. A similar reconstruction of the derivative at the volun
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boundary yields a compact finite volume representation of the diffusion equation. Howey
when the relevant reconstruction operator is integrated into the convection or diffus|
equation, the same overall operator as the corresponding compact finite difference apy.
imation is obtained. Thus, the error properties of the compact finite differences descri
above are equally applicable to the compact finite volume schemes of Kobayashi [2
This is true, however, only for the infinite or periodic domain problem. The near-bounde
schemes appropriate for the finite volume representation are different. Kobayashi propt
a fourth-order boundary scheme for use with the fourth-ordee Fadé volume method,
but no boundary treatments for use with higher order finite volume representations
reported.

Inthe coupled derivative (CD) formulation of Mahesh [25], one takes advantage of the f
that in many problems one has both a first and second derivative (convection and diffusi
By computing them together, one is able to obtain a higher order approximation to each (v
the same stencil size) than would be possible by computing them separately. In addit
even when comparing schemes of the same order, the CD methods have somewhat |
resolution properties than the standard compact finite difference methods. For example
sixth-order CD first derivative approximation has an error approximately a factor of 3 smal
than sixth-order Pagdpproximation for wavenumbers less than approximétgly 2. For
the second derivative, the effective wavenumber has smaller error at large wavenun
(k > Kmax/2). The matrices needed to implement the CD method have larger bandwic
with the result that the computational cost is slightly higher than the standard compact fir
difference methods of the same order [25]. In finite domains, the stable boundary sche
investigated by Mahesh were third order for the first derivative and fourth order or less
the second derivative. The effects of the reduced order boundary schemes on resoll
properties of finite domain problems is of concern.

2.5. Basis for Comparison

To compare the resolution properties of the several spatial discretization schemes
cussed above, it is necessary to define the basis of comparison. The question is: comp
B-spline, finite element, and finite difference methods, what characteristics of these m
ods (i.e., what degree polynomials, or what stencil size) should be compared. In this pz
we take the view that comparison should be done between schemes with matrices that
the same bandwidth. The bandwidth of the matrices is an indicator of the computatio
cost of performing the linear algebra associated with the scheme, so methods with sin
linear algebra costs are compared. This is related to the common practice of characters
finite difference methods by their stencil size.

There are several reasons that a comparison based on bandwidth is appropriate il
current context. First, costis animportant consideration and the linear algebra cost for wt
bandwidth is an indicator often dominates the computational cost in the numerical solut
of PDEs. Second, commonly used bases of comparison, such as polynomial degree, at
defined for all methods, or, as with order of accuracy or convergence, may have differ
common interpretations in different methods (e.g., order of derivative approximation
finite difference versus order of function approximation in finite elements). Finally, it is n
always clear which of several accuracy indicators are of most interest, and so should f
the basis of comparison. By making bandwidth (cost) the basis of comparison, one
more conveniently assess the relative merit of disparate schemes by a variety of meas
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Of course, there are many computational costs that are associated with the nume
solution of any given problem, not all of which scale with the bandwidth. These will val
with the details of the problem being solved. So, any general cost based comparison
this is inherently imperfect. Nonetheless, when comparing disparate schemes, some
for comparison based on cost is appropriate, and matrix bandwidth is the best indicatc
the relative computational complexity of these schemes that we were able to devise.

3. FOURIER ANALYSIS

In this section, a Fourier analysis of the errors associated with the approximation
differential operators by the several spatial discretization schemes discussed in Sectior
presented. The resolution properties of the numerical schemes are most directly investic
using a Fourier analysis [24, 26, 27, 36, 38], in which the approximations of the operat
in a periodic or infinite domain with a uniform grid are compared.

3.1. Effective Wavenumber and Eigenfunctions

One common measure of how well a differential operator is approximated is the effect
wavenumber. In a periodic or infinite domain, the eigenfunctions of derivative operat
are the complex exponentials, and the eigenvalues aftthderivative ardik)", wherek
is the wavenumber of the complex exponential ard./—1. The effective wavenumbers
k are obtained from the eigenvalues of the approximate derivative opetdtot® as
I~<j = \”/’Izn’ wherex; isthejth eigenvegue of the approximate operators. For central schem
such as those studied in this sectitris real. Perhaps more important than the effective
wavenumber is the error in the eigenvalie- (ik)"|. Also of interest is how closely the
eigenfunctions of the approximate operator correspond with the exact eigenfunctions
complex exponentials).

While the effective wavenumber has been widely studied as an indicator of the accur
and resolution of approximate derivative operators, the accuracy with which the eigenft
tions of the operators (the complex exponentials) are represented has not generally
considered. The accuracy of the eigenfunctions of the approximate operators is impol
because they are a necessary part of the description of the operators (accurate eigeny
is not enough). The accuracy of the eigenfunctions is clearly related to the ability to
proximate the complex exponential, which is also important. In finite element and B-spli
methods, the error in a numerical solution of a problem is related to and is certainly limi
by this approximation error.

One reason that eigenfunctions have been less often examined is that in finite dif
ence methods, the circulant nature of the operator matrices ensures that the eigenfunc
of the operators exactly represent the valueg/8f at the finite difference grid points.
However, with methods based on functional representations, one can measlugeethe
rors ||&k* — ¥ (X)l, whereyr;(x) are the approximate eigenfunctions. For the B-spline
schemes, the matricé$ andD are circulant. Therefore, the approximate operator has tt
same eigenfunctions for all derivatives. These approximate eigenfunctions are also the
as those obtained by directly approximating the complex exponential, using the method
der considerations (Galerkin or collocation).

The B-spline matrices are circulant because with uniform knots, the basis functions
all the same, only differing by a spatial shift. For high order finite elements, howev
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there are several different basis functions, so the matrices are not circulant. But they
block circulant, which allows the eigenvalues and eigenfunctions to be easily determir
(see Appendix B). Since the matrices are not circulant, the eigenfunctions of differ
derivatives are not the same, and they are different from the direct approximation of
complex exponential. However, there is very little difference between the eigenfunctions :
representation of the complex exponential, which has a slightly lower error. Therefore,
error in the direct Galerkin finite element approximation will be presented in the followin
sections.

3.2. Comparison of Accuracy and Resolution

The numerical schemes tested using Fourier analysis include B-spline collocation .
Galerkin formulations, finite element Galerkin formulations, and compact finite differen
methods. Effective wavenumbers associated with the first and second derivatives for
four methods discussed here are shown in Figs. 2 and 3, respectively. Notice that the w
number is normalized by the maximum wavenumnigs, representable with the numerical
method. Forthe spline and finite difference methégg, = =, whereAx is the grid or knot

AX?

spacing. For th€g or C(g_1)2 finite element schemekyay = dA—’j( or (d;A}()”, respectively,

(a) (%)
08} ] 08 | 7]
"\
M VA Y
.\‘
5 08 | {1 zosf ]
: £ \\
o= 04} 1 S o4 ! ]
02} ] 02} \%
0 ] L 1 L 0 L L 1 1
0 02 04 06 08 1 0 02 04 06 08 1
1 . r r r
© ™

08 | AR

27\

i

£ !

w2 04 F E

02 b 1

0 ] L 1 L

0 02 04 06 08 1
k/kmax

FIG.2. Effective wavenumbérofthe firstderivative operators for matrix bandwid# 3, (b) 7, (c) 11: - -- -,
B-spline ———,compact finite difference; - - - - , Co finite element Galerkin;---, C4_y)- finite element Galerkin;
——, exact differentiation. For bandwidth equals 3, the three schemes yield the same result. For bandwidth e
7 and 11, the difference between B-spline & ,) , finite element Galerkin schemes is indistinguishable.
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FIG. 3. Effective wavenumbek of the second derivative operators for matrix bandwicdh 3, (b) 7,
(c) 11: - - - -,B-spling ———,compactfinite difference; - - - -, Co finite element Galerkin;---, C4_y),- finite element
Galerkin; —, exact differentiation. For bandwidth equals 3, B-spline and finite element yields the same res

since there ard or (d + 1)/2 degrees of freedom per element. This definitiorkg is
appropriate for finite elements, since the number of Fourier modes that can be represe
and the size of the calculation are determined by the number of degrees of freedom ir
representation, not by the size of the elements.

There are several things to note about the effective wavenumbers. First, for a gi
matrix bandwidthw, k is identical for B-spline collocation and Galerkin methods. This i
despite the fact that for collocation, the order of the splines is higher () than for the
Galerkin @ = %4)_ This identity was noted by Swartz and Wendroff [36]. Second, fo
a tridiagonal matrix, the finite element scheme (linear elements) is identical to the spl
Galerkin method (linear splines). For first derivatives, the effective wavenumber is also
same as that for compact finite difference, which is the fourth-ordez Belteme. For the
second derivative, however, they are different. Finally, the high-order (large bandwid
finite element effective wavenumbers depart suddenly from the exact result, effectiv
limiting the range of wavenumbers for whiHs a good approximation d&f.

The errors in the eigenvalu¢s — (ik)"| for the first and second derivatives, and errors
in representing the complex exponential are plotted in Figs. 4, 5, and 6, respectively
comparing the different methods, the most obvious difference is the rate of convergenc
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FIG. 4. Error in the eigenvalue of first derivative operators for matrix bandwidit3, (b) 7, (c) 11: —,
B-spling - - - -, compact finite difference; — — €, finite element Galerkin.--, Cq_y) ), finite element Galerkin.
For bandwidth equals 3, all schemes yield the same resutt) Jngnmaximum order high-resolution schemes are
shown: ——, bandwidth= 3, fourth(maximum)-ordek;- - -, bandwidth= 3, second-order; ———, bandwidth5,

eighth(maximum)-order;--, bandwidth= 5, sixth-order.
smallk: these curves asymptotically approach zero according to their theoretical con\

gence rate as shown in Table lIl.
Note that the compact finite difference convergence rate is significantly faster fordarge
This is possible because in the finite difference method, the “mass” matrix can be differ

TABLE 11l
Order of Convergence of the Errors of Eigenvalues
and Representation of the Complex Exponential
Eigenvalue of the  Eigenvalue of the
second derivative Complex
exponential

Numerical first derivative

scheme operator operator

. . w4l
Finite element Galerkin kw+2 kw+1 k%
. . w4l
B-spline Galerkin kw+2 kw+t K2
kw+2 kw+1 kw+1
ka—l k2uv NA

B-spline collocation
Compact finite difference

Note.w is the matrix bandwidth.
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FIG.5. Errorinthe eigenvalue of second derivative operators for matrix bandvagith (b) 7, (c) 11: —,
B-spline; - - - -, compact finite difference — —,C, finite element Galerkin.--, C4_y) finite element Galerkin.
For bandwidth equals 3, B-spline and finite element yields the same result.

for each order derivative. In contrast, by the nature of functional expansion methods,
mass matrix is the same for all derivatives that can be determined from the representa
If this restriction were imposed on the compact finite difference methods, the same ol
of convergence as the spline and finite element methods would be obtained.

Another property of the approximate operators is the behavior of the error atkdarge
This is important because it determines the range of spatial scales that can be resolve
the numerical method. There is no universally used measure of this resolution prop
of numerical methods. One measure proposed by Lele [24] is the lowest wavenur
(k/kmax) at which the error crosses some arbitrary threshold (say 0.1), giving the fractior
the maximum wavenumber range that is represented to this accuracy or better. In Tabls
this resolved fraction for 10%, 1%, and 0.1% error in the eigenvalues and eigenfunction
listed for the numerical schemes discussed.

The results discussed above have included only compact finite difference schemes
maximum possible order for the given bandwidth (or stencil size). However, Lele [2
pointed out that one could attain improved resolution properties by decreasing the ol
of accuracy for a given bandwidth and using the extra degrees of freedom to improve
resolved fraction. The error in first derivative effective wavenumber for two such schen
(bandwidth 3 and 5) are shown in Fig. 4d, along with that of the corresponding maxim
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10°

®

error

error

FIG. 6. L, errorin the representation of the complex exponential with wavenuknfiermatrix bandwidth
(a) 3, (b) 7, (c) 11: ——, B-spline collocatign - - -, B-spline Galerkin— — —, C, finite element Galerkin and
----- , Ca-1,2 finite element Galerkin. For bandwidth equals 3, B-spline Galerkin and finite element Galerkin yie
the same result.

order scheme. The coefficients for these schemes are also listed in Table I. Each of
high-resolution schemes has an order of accuracy two lower than the maximum poss
This frees one degree of freedom in the scheme which was used to increase the 19
solved fraction as much as possible. For the tridiagonal scheme, the 1% resolved frac
is increased from 0.35 to 0.52 and in the pentadiagonal case from 0.61 to 0.77. Howe
the magnitude of the resolved fraction improvement, as well as its importance necess:
decreases with increasing bandwidth and order of the approximation. Also, these sche
tuned to improve 1% resolved fraction degrade the 0.1% resolved fraction, and impr
the 10% resolved fraction only marginally. Thus, in using such methods, one needs fc
confident that the error level one is targeting is in fact critical, since the high resoluti
property of the schemes will not be manifested for other error levels. Finally, the resoluti
improvements discussed here are only for the periodic domain case. In bounded dom:
boundary schemes that preserve these properties would need to be developed. Beca
these complications, we will consider only the maximal order compact finite differen
schemes for each bandwidth, and consider their resolution properties to be represent
of what is possible with such schemes. One should keep in mind that for any partict
purpose, it may be possible to use the flexibility of compact finite difference methods
attain somewhat better resolution properties by reducing the order or accuracy.
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TABLE IV
Resolved Fraction for Eigenvalues of First and Second Derivative Operators,
and Eigenfunction Representation

(a)d/dx

CD finite C(d—l)/Z finite
B-spline collocation  Compact finite difference element Galerkin element Galerkin

Band-width 10% 1% 0.1% 10% 1% 0.1% 10% 1% 0.1% 10% 1% 0.1%

3 059 035 020 059 0.35 0.20 059 035 020 059 035 0.2C
7 0.80 0.65 052 084 0.73 0.62 0.82 0.27 0.24 080 0.67 0.59
11 0.87 0.77 0.67 090 0.83 0.76 0.54 050 045 086 0.78 0.57
(b) d?/dx?
C, finite Ca-2 finite
B-spline collocation ~ Compact finite difference element Galerkin element Galerkin

Band-width 10% 1% 0.1% 10% 1% 0.1% 10% 1% 0.1% 10% 1% 0.1%

3 0.34 0.11 0.03 0.68 0.39 0.22 034 011 0.03 034 011 0.03
7 1.00 065 048 094 0.78 0.66 0.57 033 0.23 0.81 050 0.32
11 1.00 080 0.68 099 0.88 0.80 059 045 034 1.00 0.66 0.4¢

(c) Eigenfunction

C, finite Ca-12 finite
B-spline collocation B-spline Galerkin element Galerkin element Galerkin

Band-width 10% 1% 0.1% 10% 1% 0.1% 10% 1% 01% 10% 1% 0.1%

3 0.68 043 026 046 0.16 0.05 0.46 0.16 005 046 0.16 0.05
7 0.84 0.70 057 072 047 0.29 048 025 015 069 035 0.17
11 089 079 0.70 0.81 0.63 0.48 053 035 021 077 042 0.27

Despite the fact that the order of convergence for the finite element and spline effec
wave numbers is the same, the errors in the spline methods are lower at ank.gimen
essence, the spline methods have better resolution. This is indicated by Lele’s resolt
measure, as shown in Table IV. The reason for the lower resolution of the finite eleme
is the low continuity at the element boundary. One way to understand this (for the fi
derivative) is to imagine a high-order finite element functioavolving according to the
scalar wave equatiori;‘# + cg—g = 0. At the initial time there are discontinuities in first
derivative at the element boundaries. The exact solution would have these discontinu
propagate into the middle of the element, where they cannot be well represented, lea
to relatively large errors. This scenario suggests that maximum possible continuity at
knots, that is, splines, is desirable.

The uniform grid periodic analysis is informative, but it does not address two key issL
commonly encountered in numerical simulations, that is, nonuniform grids and boundar
The behavior of finite difference methods in particular is at issue since the formulati
discussed in Section 2.2 does not apply directly in these cases. Also, the result tha
eigenfunctions of the derivative operators are recovered exactly (Section 3.1) will not hc
It is thus of interest to consider model problems in finite domains. Two such problems
discussed in Sections 4 and 5, namely the first-order wave equation and heat equation.
will only be applied to the B-spline collocation and compact finite difference schemes,
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two best methods discussed above. A preliminary analysis of the other schemes indic
that their performance relative to B-spline collocation and compact finite difference on 1
wave and heat equations is consistent with that shown above.

3.3. Isotropy Properties

The resolution results of the previous sections can be easily extended to multiple
mensions when a tensor product representation is used. The primary complication is
the representation introduces an anisotropy because of the introduction of the grid di
tions [24, 38]. This anisotropy can be characterized by considering the isotropy of
approximate gradient operator. Consider the gradient of the two-dimensional complex
ponentialp = &>, wherek is the wave vector, andlis the coordinate vector. The exact
gradient is given by k¢, whereas the approximate gradientiksp, wherek is the ef-
fective wavenumber vector with componehis= k(kx) = k(k cog6)) andk, = k(k,) =
k(ksin(®)), wherek is the magnitude of the wave vector ahi$ the angle it makes with the
x-axis. The functiotk is the one-dimensional effective wavenumber function, as described
Section 3.1.

The relative integrated square ergrin the approximate gradient is given by

¥ 2 ~ 2 ~o 2
ezk(,i,() _ K ;zkl = (cos@ - 7k(k(|:(os(9)) + (sin@ - 7k(ki|n9)> . (10)

so there is clearly a variation of this error with the arrglé\ssuming thak is continuously
differentiable, this error is minimum wheh= % + % and maximum whef = . That

is, the error is maximum when the wave-vector |s aligned with the grid. If the errior in
(i.e.,k — k) does not increase monotonicly withthen there can be other extrema as well.
As is evident in Section 3.2, over most of the wavenumber range for both compact fir
difference and B-spline schemés-- k can be modeled as

k—k = ak", (11)

wheren is the order of convergence aads just a proportionality constant. For this— k
dependence, the maximum and minimum error can easily be determined:

k — k(k))?
efnax(k) = % (12)
k
(k— k(k))

&in(k) =

This error variation is just due to the fact that wher: /4, thek function is evaluated
atk/+/2 (twice) rather than &, so that the error is smaller by a factor &f 2

Another quantity of interest is the component of the approximate gradient in the directi
of the exact gradient. The ratio of this to the exact gradient is given by

(13)

cosvk(k cosd) + sindk(sing)

- 14)

cp(k) =

When solving the two-dimensional wave equation, this is the speed of propagation of
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FIG. 7. Maximum and minimum (ird) error (1— c;) in the phase speed for two-dimensional waves, with
matrix bandwidth(a) 3, (b) 7: ——, B-spline collocation; - - -, compact finite difference. For bandwidth equals
3, B-spline collocation and compact finite difference yield the same result.

numerical solution relative to the exact speed [24]. This quantity also depends on the a
6 and its difference from one is minimum fér= 7 + %-. Again, the anisotropy can be
characterized by the maximum and minimuncg(in 6). Using the above model fér— k

we get

k — k(k
1- Cp(k))max = % (15)
(1~ Cplkmn = 02 (16)

Note that for this simplé& — k, € = (1 — ¢,)? this is not true in general. As an example,
(1 — cp(k))max and (1 — ¢, (k))min are shown in Fig. 7 based on the actisdbr several
schemes. Note that maximum and minimum curves are separated a constant ratio o
proximately 2, consistent with the above analysis.

The above analysis makes it clear that the anisotropy of the approximate gradient ope
is governed directly by the errors kn Thus, when using tensor product representations
high resolution schemes in whi¢h— k is small over a wide range of wavenumbers, the
anisotropy errors will also be small over the same range of wavenumbers.

4. FIRST-ORDER WAVE EQUATION IN BOUNDED DOMAINS

In this section, B-spline collocation methods and compact finite difference methods
used to solve the first-order wave equation in nonperiodic domains. The problem is defi
as

U+u=0 forO<x <1,
(17)
u(0, t) = exp(—ikt).

The exact solution assuming periodicity in time is

u(x, t) = expik(x —t)). (18)
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For numerical solution, itis assumed th&x, t) takes the fornu(x, t) = v(x) exp(—ikt)
and solves the following equations fofx):

dv
ikv=—, v(0) =1 19
v= g VO (19)
The equation is discretized with B-spline collocation and compact finite different
schemes on both uniform and nonuniform grids.

4.1. B-Spline Collocation Formulation

As mentioned in Section 2.1.3, collocation points at the B-spline maxima are select
In general, using this “B-spline maxima” collocation formulation with splines of odjer
matrices withd + 1 nonzero diagonals will be obtained. In the case of uniform grids awe
from the boundary, there are ordynonzero diagonals as the maxima of splines coincid
with the knot points. After discretization, a matrix equatiesMa = D1« is obtained,
whereM and D; are the mass and first derivative operator matrix, @nsl the B-spline
coefficient vector.

The boundary condition is implemented by replacing the operator at the boundary co
cation point withvy = 1.

4.2. Compact Finite Difference Formulation

Lele presents a comprehensive study of high resolution finite difference schemes .
In his paper, the effective wavenumber in a periodic domain is investigated. For dome
with nonperiodic boundaries, the same analysis is used to obtain the effective wavenum
both for the interior and the special boundary schemes. The effective wavenumbers fol
boundary schemes are in general complex, with the real part associated with the dispe
error and the imaginary part associated with the dissipative error. The conservative fori
lation, eigenvalue analysis, and stability limits for explicit schemes are also presented.
the details, the reader is directed to [24].

Inthis section, two issues are addressed. The firstis an alternative approach to studyin
boundary formulation, instead of the effective wavenumber analysis of Lele. The secon
the formulation of schemes with nonuniform grids. The same problem is then solved wh
offers direct comparison with the B-spline collocation method.

4.2.1. Boundary Formulation

To discretize the hyperbolic equation, the numerical schemes need to resolve the trave
waves in the domain. The boundary formulation is studied using normal modal analy:
Normal modal analysis is also used by Carpeeteal. [5] to investigate the stability of
boundary treatments for compact finite difference schemes. The similarities of these
analyses will be pointed out after the description of the current boundary formulation.

Inthe interior, the compact finite difference approximation of the first derivative is derive
from Eq. (8), which can be rewritten more generally as

m

m

/ ’ Vigj — Vi—j

Ui+zaj(vi/+j+vi—j)=zai%’ (20)
j=1 j=1
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wherem is related to the matrix bandwidth by m = “’T‘l Knowing thatv” = ikwv,
m m
ZCjUi,j + iky; —ZCTUiH =0 (22)
j=1 j=1

is obtained, where; = g—; + iajkAx andcj is the conjugate of;. This can be interpreted
as alinear recursion relation for. Such a recursion has solution$, whereA is a function
of k. Substitutingvj = Al into Eq. (21), the characteristic polynomial is obtained,

m m
> AT +ik =) Al =0 (22)
j=1 j=1

which has 2n roots. In general, ifA . is a root, themA _ = Ai‘;l is also a root. These root
pairs are denoted as type | root pairs.Afl = 1, A = A*~L. In this case, there can be two
independent roots. These roots are denoted as type Il roots. In thi ksmid, Eq. (22) has
the form

m

aj i ;
(A=A = 2
§2j< ) =0, (23)

which always has the solutions
A-A1=0= A==l (24)

Changing notation to that of effective wavenumbers,
o o k
A = exp(ikAX) = u(x,t) =exp| ik|{ x — Et , (25)

type | root pairs correspond to conjugate pairs of complex effective wavenukbedk*,
while type Il roots yield reak. Conjugate pairs of complex effective wavenumbers represe
a pair of solutions, one of which grows exponentially in amplitude to the right, the oth
to the left. Also, fork = 0, the two solutions yiel# = 0 andk = knax. Clearly, of the 2n
solutions, only one solution with rellcan be a valid approximation to the exact solution
The remainder are spurious. When Eq. (20) is used to solve Eq. (19), the coefficient
the various solutions are determined by the boundary conditions and special differenc
schemes used near the boundaries. Clearly, the boundary schemes should be chosen t
the amplitudes of spurious solutions as small as possible.

To see how this works, consider the tridiagonal and pentadiagonal interior scheme
Table ). For these two cases, the coefficients in the characteristic polynomials and t
corresponding roots are given in TableA4 andA 3 are complex conjugate pairs whilg,
andA ; have magnitude 1A represents the approximation to the exact solutioni&xyx)
to the order associated with the scheme and it has a positive group vedodisya spurious
wave with a negative group velocit, andA ; are spurious waves growing exponentially in
magnitude to the right and left, respectively. For the spurious waves that grow exponenti
to the right, the magnitude of the waves is largest at the right boundary. Thus, by arranc
the right boundary schemes to make thewave (for example) small at the right boundary,
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TABLE V
Coefficients and Roots of Characteristic Polynomials

(a) Coefficients of Characteristic Polynomials

Band-width (] [
3 1
3 1 + Zl|kAx N.A.
20 4 25 1
5 — + —ikA — + —ikA
27 T 216 T 36 %
(b) Roots of Characteristic Polynomials
Band-width Ag A, A, As
3 explik Ax) —1.0000+ 0.3333ik Ax N.A. N.A.
+O((kAX)%) 4+ 0.0555KAX)%+ ---
5 explik Ax) —1.0000+ 0.1636ikAx —6.2397 —0.1603
+0O((KAX)®)  +0.0134KAX)>+ --- +1.1118ikAx +0.0286ik Ax
—0.0733kAX)?+ -+ +0.0070kAX)? + - -

Note.The various coefficients in the expressions foare given to four digit accuracy.

the A, solution is small everywhere, regardless of the length of the domain. Similar
waves growing to the left (e.gA3), should be controlled at the left bourdary. For waves
with |A| = 1, or equivalently reak, the “group velocity"vg = dk/dk determines which
boundary should control the wave. With positive group velocity, the left boundary contrc
the wave because when solving the transient problem (17), information from the bounc
will propagate into the domain from the left. Similarly, waves with negative group velocit
are controlled at the right boundary. Thus, the spurious solutipwill be controlled by
the right boundary scheme, while the physical boundary conditions at the left boundary
control the physical solution .

To determine the appropriate inflow boundary schemes, consider the general solut
which near the inflow boundary can be written as

vj = PoA} + psAl + O((kax)™, (26)

wheren is the order of the error in the interior scheme (5 or 9 for tridiagonal and pe!
tadiagonal schemes, respectively). Note that for the tridiagonal schesrend Az can

be considered to be zero. Ti@((kAX)") term is the contribution of the\; and A,
waves, which will be this small by construction of the right boundary schemes. Using tl
expression, the left boundary schemes are constructed to pgakel + O((kAx)") and

ps = O((kAx)") (for the pentadiagonal scheme). This is accomplished using schemes
the form

m+i 3m—i

/o - ) H
;aijvi_ﬂjgoa”vj forO<i<m-—1, (27)

for the firstm = "’T‘l points, except for the boundary poitit= 0), which is replaced by
the boundary conditiong = 1. The coefficients for bandwidth 3 and® & 1 and 2) are
shown in Table VI. A Taylor series analysis of these schemes shows them to be of the s
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order as the interior scheme, and indeed this is how they were derived. This appears |
a sufficient condition for the suppression of the spurious waves to the desired order. N
however, that the theory of Gustafsson [5, 15] implies that boundary schemes one o
lower than the interior should be adequate to ensure global convergence consistent witl
order of the interior scheme.
Near the outflow boundary, the general solution can be written similarly to (26),
Ut = PhAg' + PLAT 4 PrAS 4+ O((kAX)"), (28)

where p/ = piAN and N is the grid number of the right boundary. Boundary scheme

that are “mirror images” of the left boundary scheme resulpjrand p, = O((KAX)")
(pentadiagonal scheme). Thus, we have

3m—N+i
Z —an_ijun_j fOrN>i>N-m+1,
=0

m+N—i
1

Z ON—j jv;\lfj = B (29)
j=0

where again the coefficients are given in Table VI.

The boundary scheme analysis presented here is similar to the GKS stability analys
boundary treatments in Carpentgral.[5], in which a similar model problem is used and
in which the same spurious waves are treated. However, in Carprdaérthe assumed
temporal form of the solution is more general in that the frequén@y our notation, see
Eq. (18)) is allowed to be complex. The concern is then whether the time-periodic soluti
of Eq. (17) of the form used here are stable. For the fourth-order tridiagonal schei
Carpenteeet al. show the combined interior and boundary schemes to be GKS stable,
they do not treat the eighth-order pentadiagonal scheme discussed here. The stability ¢
solutions to (19) will be discussed in Section 4.4.

4.2.2. Nonuniform Grids

Another issue that needs to be addressed is the formulation of the compact finite dif
ence scheme with nonuniform grids. The approach is to apply a mapping which uses

TABLE VI
Coefficients of the Boundary Formulation for the First Derivative

Band-width i o o1 3 a3
3 0 1 3 0 0
5 0 1 12 15 0
1 2
5 — 1 2 =
15 3
Band-width i aio &1 a2 a3 Aig as ET
17 3 3 1
3 o Y s 2 _z 0 0 0
6 2 2 6
5 0 79 77 55 20 5 1 1
20 5 4 3 4 5 60
247 19 1 13 1 1
5 1 - - = — — - 0
900 12 3 12 300




532 KWOK, MOSER, AND JIMENEZ

uniform mesh scheme in the mapped coordinate. The mesh mapping is given in Eq.
The discretization equations (8), (27), and (29) are modified by the mesh mapping

dv

dvl _dv
dx

E

dé

Wl (30)

Thus, the equation to be solved%%% = ikv. The same interior and boundary scheme ar
then used ir§.

4.3. Comparison

Tests based onthe solution of the first-order wave equation were carried obit withOO.
Before discussing the results, however, it should be noted that different from the effec
wavenumbers, the accuracy of the solution of the wave equation is dependent on the nur
of intervalsN apart from the wavenumber. In this sense, the results here are less gen
than those of the effective wavenumber. Nevertheless, using thelddoreboth schemes
allows us to compare their order of convergence and resolution.

The results on uniform grids are discussed first. Theerrors in the representation of
the solution of the wave problem using B-spline collocation and compact finite differen
methods are shown in Fig. 8. For B-spline collocation methods, the errors vari iikth
k**+2, Notice that in periodic domains, the convergence rates of the eigenvalue of the 1
derivative operator and the eigenfunction kifé? andk*+1, respectively (see Figs. 4 and 6
and Table 11). For compact finite difference schemes ltherror varies wittk like k21,
This is consistent with the theoretical convergence rate (Fig. 4 and Table Ill), though
curve is not smooth. Apparently, the boundary condition and boundary schemes do
affect the convergence rate of either scheme.

An error of B-spline solution that varies $+2 is curious because the error is bounded
from below by the error in representing the complex exponential, which as indicated
Table 11, converges lik&”+1, To resolve this apparentinconsistency, note that the equatio
for the B-spline coefficients have the same form as the compact finite difference equati
and so the analysis in Section 4.2.1 applies to them as well. The solution is character

b
1’ ®) 3
<
10° /"(‘
/’:,-
5 10
g
@ 10 I’l
10
1040 | 1010 /'/
10 : 10" :
10° 10" 1’ 10 10" 1’
k/ kmax k/ kma.x

FIG. 8. L, error in the representation of the solution of the wave equation with wavenuadreuniform
grids for matrix bandwidttia) 3, (b) 5: —, B-spline collocatiop- - - -, compact finite difference.
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k/kmax

FIG.9. L,representation error with wavenumikdor matrix bandwidth 3: —, solution of the wave equation
(17) in bounded domaijn - -, complex exponential in periodic domain.

by roots of the characteristic polynomial (), only one of which is an approximation to
the “exact” solution. In this case the “exact” solution (away from the boundaries) is t
dependence of the B-spline coefficients for representation of the complex exponenti
an infinite domain, i.e.Ao = expik Ax. With the exact B-spline coefficients, tthe error
converges lik&k”*1. However, in the solution to (17), the analysis in Section 4.2.1 show
that there are errors in the B-spline coefficients of odterx)**+2, due to the error img
and the errors ip;. For largek, the errors in the B-spline coefficients dominate, resultin
in ak*+2 dependence, and for sufficiently smiallhe representation error of the complex
exponential dominates, resulting ik dependence. This s illustrated in Fig. 9, in which
the error in the solution to (19) is shown along with the representation error of the comp
exponential for thev = 3 case. The change frokA to k* dependence occurs wheek ~ 1

(or k/kmax ~ 1/Nm, whereN = 100), which is consistent with the fact that the dominan
error arising from the error im\})' is of orderkL(kAx)*“** (see Section 4.2.1). Note that
for B-spline Galerkin solutions of this problem, the error in representing the compl
exponentials, which goes likez" (see Table IIl), dominates over the errorsAg and

p; for all k, resulting in an overall convergenceki’f%l. For the compact finite difference
methods, the error decreases IK& 1, consistent with the analysis of Section 4.2.1 anc
the convergence rates listed in Table .

When plotted versuk/kmax = kAX/7, the error curves must depend dh since the
error behaves del(kAx)"1 ~ N(kAx)". One way to obtain a curve that is valid for All
is to plot erroy N versusk/kmax. The resulting curve would not shift & changes except
when the error is close to 1, and, for B-spline collocation, wkfkmax < 1/Nx (where
the representation error dominates).

Perhaps more importantthan the order of convergence is the resolution of the two sche
The well-resolved fraction of the wavenumber range for the solution of the wave equat
is shown in Table VII. It can be seen that for tridiagonal schemes, the two have almost
same resolution. For pentadiagonal schemes, compact finite difference has better resol
due to the higher order of convergence.

Another issue is the effect of a nonuniform grid. Thgerrors in the representation of
the solution of the wave problem using the two numerical schemes on nonuniform gr
are shown in Fig. 10. Here, the wavenumber is normalized by the maximum wavenum
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TABLE VII
Resolved Fraction for the Solution of the Wave Equation
for Uniform Grid Distribution

B-spline collocation Compact finite difference
Band-width  10% 1% 0.1% 10% 1% 0.1%
3 025 0.15 0.10 0.24 0.15 0.09
5 040 030 0.22 045 0.34 0.27

Kmax = ﬁw, whereAXmax is the maximum grid spacing. Basically, both schemes maintai
the same convergence rate, as in the case of uniform grids. Note that for the compact f
difference schemes, the curves turn up at the lowest wavenumber and the cause is not
With regard to the resolved fraction, Table VIl indicates that the two tridiagonal schem
again have the same resolution. (Note however that in nonuniform grids, B-spline collocat
has elements outside the three “main” diagonals in the interior.) For pentadiagonal schel
compact finite difference has better resolution.

The order of convergence of the two schemes suggests that the difference in resolt
properties between compact finite difference and B-spline collocation will become b
ger as the matrix bandwidth increases. Also, comparing results in periodic and boun
domains (Tables IV and VII), it is found that the resolution in finite domains is sut
stantially lower. In particular, the error reaches lk@knyax ranging from 0.4 to 0.6 in
Fig. 8.

This plateau of the error at 1 for moderate valuek/d,.x is also caused by dominance
of the error inAY, which is the error (of function values or B-spline coefficients) at the
right boundary. In terms d€/ kmax, this error goes likeN (k/kmax)", wheren is w + 2 for
B-spline collocation andi2 — 1 for compact finite difference. This error is of order 1 when
K/ kmax = N~ and thus for largek/kmay the overall solution error should be of order 1.
With N = 100 (as in this case) and with= 5, 7, and 9 the value dll—%/" is 0.4, 0.52,
and 0.60, respectively, which is in reasonably good agreement with the start of the plat
for w = 3, w = 5 B-splines andv = 5 compact finite difference.
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FIG.10. L,errorinthe representation of the solution of the wave equation with wavenlmoberonuniform
grids for matrix bandwidtl{a) 3, (b) 5: ——, B-spline collocation- - - -, compact finite difference.
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TABLE VIII
Resolved Fraction for the Solution of the Wave Equation
for Nonuniform Grid Distribution

B-spline collocation Compact finite difference
Band-width  10% 1% 0.1% 10% 1% 0.1%
3 0.29 019 0.12 0.29 0.19 0.12
5 047 035 025 055 0.43 0.34

4.4. Stability of the Time-Harmonic Solutions

The time-harmonic solutions evaluated in Section 4.3 were forced to be time-harmol
so there is no guarantee that these solutions are stable when the wave equation is s
as an initial value problem. To evaluate this, we need only examine the eigenvalues of
relevant approximate operator. A perturbattanfrom one of the harmonic solutions of
(17) is governed by

Sug+duy =0 0<x<1 4u(0t)=0. (32)

When numerically discretized this equation has the fdidw, = D1d«, wheredu is ei-
ther the B-spline coefficient vector (B-spline collocation) representingr the vector
of grid point values oBu (finite difference). Consistent with the implementation for the
time-harmonic solutions, boundary conditions are implemented by replacing the equa
associated with the point at= 0 with §(«g); = 0, wheresag is associated witkx = 0.
This has the effect of replacing the first (say) romdfwith all zeros, except for a one in
theaao column, and replacing the first row 8f; with all zeros. Call the modified matrices
M and D1, respectively, Eq. (31) can be rewrittém, = M~ 1D18a All solutions of this
equation will decay to zero provided all the eigenvaluesiof D, have negative real parts.

These eigenvalues have been computed for the bandwidth 3 and 5 schemes examir
this section wittN = 20. For tridiagonal compact finite difference schemes, the eigenvalu
doindeed have negative real partdowever, the B-spline collocation methods each produc
two eigenvalues with positive real parts. As an example, the eigenspectra of the bandwic
and 5 B-spline collocation operator are shown in Fig. 11, along with the corresponding fir
difference eigenvalue spectra. The eigenfunction associated with the unstable eigen\
oscillates with wavelength/&2x and decays rapidly away from the in-flow boundary. Thus
when solving (17) as an initial value problem with the B-spline collocation methods, tt
growing eigenfunction will be observed, rather than the time-harmonic solutions.

In the applications we have in mind, such as solution of the Navier—Stokes equatic
the equations are not strictly hyperbolic. There is a viscous damping term, which if 1
viscosity is large enough would stabilize this numerical instability. For this to occl
the viscous damping rate, which is approximatety Ax? (a depends on the details of

Yn [5], the eigenvalues for the bandwidth 3 schemes were computed and found to include eigenvalues
positive real parts. However, the boundary conditions are implemented differently. Instead of moMfgind
D, as described above, the prodit®D, was modified by zeroing the first row. (Private communication with
M. H. Carpenter.) These are not equivalent.
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FIG. 11. Numerically determined eigenvalue spectrum for B-spline collocation schemar(d compact
finite scheme ©) with matrix bandwidth of(a) 3, (b) 5 andN = 20. For B-spline method, collocation points
are chosen at the maxima of the splines. Also, for B-spline with bandwidth 5, there is an eiger#ald@ not
shown in the figure.

the second derivative approximation, and for high resolution schemes is a substantial f
tion of 72; see Section 3.2), must be larger (in magnitude) than the unstable eigenvalu
ArmaxAX = 0.3 as it is for the bandwidth 5 scheme, then the stability requirement wou
be that the cell Reynolds number is less tha&8a3Ax/v < 3.3a in this case). This is not
an arduous cell Reynolds number requirement.

To avoid these stability problems all together, it would be preferable if the schemes co
be modified to yield all eigenvalues with a negative real part. In the B-spline collocatit
scheme, the only aspect that can be modified is the location of the collocation points. A
from the boundaries, the collocation points are fixed by the need to preserve the sp:
symmetry of the operators. However, the exceptional collocation points near the bounc
(those that are not coincident with a knot; see Section 2.1.3) can be adjusted. As it hapg
the maximum real part of the eigenvalues is sensitive to the placement of these colloca
points, as is shown in Fig. 12. For the two B-spline schemes shown here, moving th
exceptional points toward the boundary a small amount (5% of the knot spacing) stabili
the unstable eigenvalues. The change in collocation point location has no impact on
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FIG. 12. Variation of the maximum real part of the eigenvalukg,.x, as near-boundary exceptional col-
location points are shifted from the B-spline maximum location by an amsurt—, bandwidth= 3; - - -,
bandwidth= 5. Negatives is toward the boundary.
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FIG. 13. L, error in the representation of the solution of the wave equation with wavenuknioer
nonuniform grids for matrix bandwidth 5: —, eighth-order interior, sixth-order near-boundary, third-ord
boundary - - - -, consistent eighth-order.

resolution properties discussed earlier. For bandwidths 7 and 9, it was found that a shi
6.5% of knot spacing stabilizes the unstable eigenvalues. At this time it is not clear v
moving the exceptional collocation points improves the stability of the B-spline scheme:
an inflow boundary. It is also not clear if larger shifts will be required to stabilize the high
order (bandwidth) schemes.

If one were numerically simulating Eq. (17), the stability of the time discretization woul
be an issue. In an explicit scheme, there would be a time step restriction that is fixed by
largest eigenvalues of the homogeneous numerical operators, such as those shown in Fi
The value ofd| naxAX (the maximum imaginary part of the eigenvalues) is insensitive t
AX, and is in good agreement wikhaxAX, whereknax is the maximum attained value of
the effective wavenumber (see Fig. 2).

In compact finite difference methods, boundary schemes of the same order as the int
can be unstable [5, 25]. This stability problem is solved by using boundary schemes of lo
order. For high-resolution methods such as the eighth-order pentadiagonal scheme, s
boundary schemes of compatible order can be very difficult to find. Carpenter develo
stable sixth-order boundary schemes using a rather involved stability analysis [5]. Mah
[25] chose sixth- and third-order for near-boundary and boundary points respectively
stabilize the overall scheme. However, this cure comes at a high cost in resolution
order of accuracy. Mahesh [25] pointed out that lower order boundary schemes reduce
formal order of the overall scheme to one greater than that of the boundary [15]. A test\
carried out using eighth-order pentadiagonal interior, sixth-order near-boundary (sec
and(n — Dth row), and third-order boundamth row) schemes. This scheme has a mucl
lower resolution than the eighth-order interior and boundary schemes (Fig. 13).

5. HEAT EQUATION IN BOUNDED DOMAINS

In this section, the eigenvalue problem arising from the heat equation is solved us
B-spline collocation and compact finite difference methods. The problem is defined as

vV '=xv forO<x <1, (32)

with some boundary conditions, the mostcommon ones being the Diriellgtf v(1) = 0)



TABLE IX
Coefficients of the Boundary Formulation for the Second Derivative

Band-width i Qio i1 Uj2 Uiz
3 0 1 11 0 0
18922 65943
1 = -/
5 0 563 563 0
23 2335 2659
> b G ! 688 3096
Band-width i Qg a1 a2 a3 Qs
3 0 13 27 15 -1 0
5 , 2186893 526369 3206517 1940803 583529
101340 5067 11260 10134 20268
5 1 753829 57209 58367 172793 4453
1114560 20640 8256 55728 8256
Band-width i ais a6 a7
3 0 0 0 0
5 0 14802 14839 2659
2815 20268 50670
391 529
5 1 "~ 20640 1114560 0

;o
Sos

1 12 | 1 12 .
s 10" v U 10" 10
v=X/kmax V=Xkmax
FIG. 14. Error of the eigenvalues of the heat equation with wavenurkben uniform grids for matrix
bandwidth(a) 3 (b) 5: ——, Dirichlet boundary conditions; - - - -, Neumann boundary condition, both for B-
spline ———,Dirichlet boundary condition;---, Neumann boundary condition, both for compact finite difference.
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FIG. 15. Error of the eigenfunctions of the heat equation with wavenurkban uniform grids for matrix
bandwidth(a) 3, (b) 5: ——, Dirichlet boundary conditian- - - -, Neumann boundary condition, both for
B-spline; — — —, Dirichlet boundary condition;--, Neumann boundary condition, both for compact finite

difference. For the compact finite difference, with bandwidth of 3 and Dirichlet boundary conditions, tl
eigenfunctions are exact to round-off errors.
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TABLE X
Resolved Fraction for the Eigenvalues for Uniform Grid Distribution

B-spline collocation Compact finite difference
Boundary
Bandwidth  conditon  10% 1%  0.1% 10% 1% 0.1%
3 Dirichlet 0.33 0.10 0.03 0.66 0.36 0.20
3 Neumann 036 0.10 0.03 0.46 0.36 0.16
5 Dirichlet 0.80 0.46 0.26 >0.76 0.50 0.40
5 Neumann 0.76 0.46 0.26 0.43 0.36 0.23

and Neumanm((0) = v’(1) = 0) boundary conditions. In both cases, the eigenvalues a
e = —(Tk)?, (33)

wherek is an integer. The corresponding eigenfunctiongfe) ™= sin(zzkx) anduvg(X) =
cogrkx) for Dirichlet and Neumann boundary conditions respectively.

5.1. B-Spline Collocation Formulation

Discretizing with B-spline collocation method, we obtain the matrix equatighe: =
D,«, whereM is the mass anB®, the second derivative operator matrix, anthe B-spline
coefficient vector for the eigenfunctions. For Dirichlet boundary conditions; vy = 0.
For Neumann boundary conditiong,andvy, are set to zero.

5.2. Compact Finite Difference Formulation

Similar to the case of first derivative, the discretized derivative operators are derived fr
Eq. (9) in the interior. Near the boundary, the symmetry breaks down and the correspon
equation becomes

m-+i 1 3m+1-i
Zaijvg/:m Z ajv; forO<i <m-1,
= —
- ] i (34)
m+N—i 1 3m+1-N+i

Z OéN_iij,_J-Z—Z Z AN-i j UN—j forN>i>N-m+1,
=0 (A 93

wherem = ’”T‘l The coefficients in Eq. (34) are determined by matching the Taylor seri
coefficients to one order less than the interior for tridiagonal schemes and to the s:
order of the interior for pentadiagonal schemes (using boundary of the same order
tridiagonal schemes gives rise to poor resolution for unknown reasons). The coefficie
are shown in Table IX for the two schemes. After discretization, a generalized eigenve
problemiM,a = Do« is obtained, wherd/, is the massD, the second derivative operator
matrix, ande the eigenfunction. The generalized eigenvalue problem can be solved w
the appropriate boundary condition.

5.2.1. Boundary Conditions

The Dirichlet boundary conditions are implemented by settigg= vy = 0. For
Neumann boundary conditions, a one-sided explicit (i.e., not compact) finite differer
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scheme is used to sef = vy = 0. Note that this make the boundary scheme inconsiste
with the interior scheme. Also, a very long one-sided finite difference expression is requi
to maintain the same order as the interior compact finite difference approximations.

5.2.2. Nonuniform Grids

To solve the problem on a nonuniform grid, a mesh mapping is used as in the w:
equation. Notice from the chain rule,

d2v (dé)zdzv d2 dv

e~ \dx) a2 T aae (35)

The derivative in the nonuniform-coordinate is expressed in terms of those in the trans
formed uniformg-coordinate. In thé-coordinate, there are finite difference representatiol
of the derivative operators (expressedl\&lél D; and M5 1D,. Note thatM; and M, are
different). The finite difference approximation of the second derivative operator can hel
be expressed as in Eq. (35).

5.3. Comparison

Tests based on the eigenvalue problem are performed dsirg30. Results based on
different N suggest thalN has no influence on the order of convergence and minor ir
fluence on the well-resolved fraction. The results obtained on uniform grids are preser
first. The errors in approximating the eigenvalues are shown in Fig. 14. Regardless of
boundary conditions, B-spline collocation schemes have eigenvalue errors which decr
with wavenumber ak”*1, while compact finite difference has a convergence rate&'of
Both of the above are consistent with their corresponding convergence rates in peri
domains (see Table Ill). For compact finite difference, however, the boundary conditic
do have an effect on the magnitude of the error. Neumann boundary conditions give lal
errors in the eigenvalues, perhaps due to the boundary approximationAdéo, with the
compact finite difference, there are some sharp decrease in error at particular wavenurn
for reasons that are not clear. At high wavenumbers, wiggles appear on the compact f
difference curves irrespective of the boundary conditions. With regard to resolution, we re
to Table X, which gives the resolved fraction for the eigenvalues. In many cases, comy
finite difference schemes provide better resolution for the eigenvalues. For pentadiag
scheme, B-splines have better resolved fractions in many cases. However, due to the
convergence order of the compact finite difference, the more stringent the tolerance
resolved fractions, the better the compact finite difference does.

The L, errors of the eigenfunctions of the heat equation are shown in Fig. 15. F
the B-spline collocation schemes, the convergence rate for both Dirichlet and Neum
boundary conditions appears to k&, but in the Neumann case this asymptotic rate
is not attained untik < 0.06, with the resulting impact on resolution. For compact finite
difference schemes, the eigenfunctions have errors that converge at a rate approxim
equal tok?”. However, with Neumann boundary conditions, the errors are again larg
In fact, using the Dirichlet boundary condition, the tridiagonal schemes give a soluti
that is exact to round-off errors. It is also very interesting to note that the pentadiago
scheme curve shows two sharp decreasg-ak/Kmax = 3 andy/—1/kmax = 2. At these
two particular wavenumbers, the symmetries of the approximate eigenfunctions make
point representations exact. Table XI shows the resolved fraction of eigenfunctions. As
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TABLE XI
Resolved Fraction for the Eigenfunctions for Uniform Grid Distribution
B-spline collocation Compact finite difference
Boundary
Bandwidth condition 10% 1% 0.1% 10% 1% 0.1%
3 Dirichlet 0.43 0.23 0.13 1.00 1.00 1.00
3 Neumann 0.40 0.13 0.06 0.23 0.16 0.10
5 Dirichlet 0.73 0.46 0.30 0.43 0.37 0.33
5 Neumann 0.93 0.56 0.33 0.36 0.20 0.16
TABLE Xl
Resolved Fraction for the Eigenvalues for Nonuniform Grid Distribution
B-spline collocation Compact finite difference
Boundary
Bandwidth condition 10% 1% 0.1% 10% 1% 0.1%
3 Dirichlet 0.44 0.09 <0.05 0.73 0.44 0.19
3 Neumann 0.44 0.14 0.04 0.74 0.54 0.44
5 Dirichlet 0.92 0.53 0.29 0.73 0.49 0.34
5 Neumann 0.97 0.53 0.29 0.54 0.29 0.14
TABLE Xl
Resolved Fraction for the Eigenfunctions for Nonuniform Grid Distribution
Boundary B-spline collocation Compact finite difference
Bandwidth condition 10% 1% 0.1% 10% 1% 0.1%
3 Dirichlet 0.39 0.19 0.09 0.44 0.24 0.14
3 Neumann 0.39 0.14 0.04 0.29 0.09 <0.04
5 Dirichlet 0.72 0.43 0.29 0.39 0.29 0.24
5 Neumann 0.72 0.43 0.29 0.25 0.15 0.09
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FIG. 16. Error of the eigenvalues of the heat equation with wavenurklmer nonuniform grids for matrix
bandwidth(a) 3, (b) 5: ——, Dirichlet boundary conditign - - -, Neumann boundary condition, both for B-spline;
— ——, Dirichlet boundary condition;—-, Neumann boundary condition, both for compact finite difference.
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FIG. 17. Error of the eigenfunctions of the heat equation with wavenurkleernonuniform grids for matrix
bandwidth(a) 3, (b) 5: ——, Dirichlet boundary conditign - - -, Neumann boundary condition, both for B-spline;

———, Dirichlet boundary condition;---, Neumann boundary condition, both for compact finite difference.

the eigenvalues, compact finite difference schemes in general provide better resolutior
tridiagonal methods while B-splines do better for pentadiagonal schemes.

On nonuniform grids, the behavior of both B-spline collocation and compact finite di
ference schemes is shown in Fig. 16 and 17 and Tables Xll and XIII. The errors in the eig
values of the heat equation are shown in Fig. 16. B-spline collocation methods maintain
same convergence ratekdf+! as in the case of uniform grids irrespective of the boundar
conditions. Compact finite difference schemes, however, show a degradation. Converg
rates of the eigenvalues is 2 to 3 orders less than the corresponding k&teoof uniform
grids, with Neumann boundary conditions giving worse convergence rates. Regarding
olution, compact finite difference provides better resolution for bandwidth 3, while
B-spline collocation schemes provides better resolution for bandwidth5.

The L, errors of the eigenfunctions of the heat equation are shown in Fig. 17. B-spli
collocation schemes give convergence rates’chpproximately, with Dirichlet boundary
conditions giving slightly better solutions at ldw The degradation of resolution is not
serious when nonuniform grids are used instead of uniform ones. Compact finite diff
ence schemes, however, show quite serious degradation of convergence and resoluti
nonuniform grids. They have convergence rates of akutompared t&?* on uniform
grids. A very interesting result is that B-spline and compact finite difference schemes apy
to have the same convergence rates on nonuniform grids. From table XIlII, it can also be
that B-spline collocation methods have better resolution properties on nonuniform grid

6. DISCUSSION AND CONCLUSIONS

The results of this paper indicate thatin many situations compact finite difference scheil
have better resolution and convergence properties than the other numerical methods te
The comparisons were done for schemes with the same matrix bandwidths, which we
as a surrogate for computational cost. Furthermore, it was shown that finite element
B-spline Galerkin methods had inferior resolution to compact finite difference and B-spli
collocation. There are several aspects of these results that deserve further discussion.
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Regarding high-order finite element methods, it was noted that a reason for their lo
resolution in these tests was their lower ordég &ndC_1),2) continuity at the element
boundaries (i.e., knots), whereas the spline basis retains as high a degree of continui
possible, given the order of the piecewise polynomial representation. In essence, in sy
methods, an increase in the degree of the polynomials is used to increase the degr
continuity, while inCp andCq_1),> finite elements, it is used to increase the number o
degrees of freedom of the representation. The results of the tests here suggest that the
degrees of freedom do not produce much in the way of added accurately represented m
resulting in poor resolution properties. However, the improved resolution of splines is |
without cost; that is, the representation of the polynomials in each interval (element
not iso-parametric, a very convenient property of finite element representations. Col
quently, it is much easier to formulate multidimensional finite elements on complex and
unstructured grids, than it is to formulate spline methods.

It was also noted that piecewise polynomial Galerkin methods yielded poorer repres
tations of complex exponentials (the derivative eigenfunction) than collocation metho
This is true for both finite element methods and spline methods. This is a curious re
because Galerkin approximations minimlzgerror for a given representation. The reasor
for the curious result is that we are comparing methods with the same matrix bandwic
For example, a Galerkin method that yields pentadiagonal matrices has cubic polync
als, whereas a pentadiagonal collocation methods has quintic polynomials. The rest
a fourth-order accurate representation for Galerkin and a sixth-order accurate repres
tion for collocation. However, there are other reasons one might choose a Galerkin metl
despite its higher cost; for example, a Galerkin method is trivially shown to be conservat

The two methods discussed here with the best convergence and resolution propertie
compact finite difference and spline collocation, and the comparison between them inclt
four major issues that must be traded off against the improved order of accuracy and in it
cases better resolution of the finite difference methods:

1. The generally superior convergence and resolution of compact finite difference cc
pared to B-spline collocation is simply due to the fact that in the finite difference ca:
the “mass matrix” is not constrained to be the same for all derivatives. There may, hc
ever, be costs in code complexity or computational effort in having different mass matric
depending on the details of the problem being solved.

2. Another difference is in the treatment near a boundary. In the finite difference ce
special difference schemes must be formulated near the boundary, and such boundary
ments can be difficult to formulate. For the wave equation, a criterion for a boundz
treatment with good resolution was developed in Section 4.2.1, and schemes that sa
the criterion were found by imposing a formal order of accuracy consistent with the |
terior scheme. However, consistent order of accuracy is a necessary but not neces:s
sufficient condition for the criterion to be satisfied, and directly constructing schemes
satisfy the criterion is prohibitively cumbersome in all but the simplest cases (e.g.,
tridiagonal scheme). Thus, we do not have a practical constructive prescription for bou
ary schemes that satisfies the criterion in Section 4.2.1. Furthermore, the criterion c
not guarantee the stability of the resulting combined interior/boundary schemes. Inde
the bandwidth 5 scheme constructed this way was unstable. Modifying such scheme
be stable as in Carpenter [5] is an arduous task, which has not been done for schem
order greater than sixth. The lack of stable high-order boundary schemes prompted s
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authors to combine high-order interior representations with much lower order bound
schemes (e.g., Mahesh [25]), which spoils the accuracy and resolution of the combi
scheme.

In the heat equation problem, the development of a criterion like that used in the
vection equation for good boundary schemes is not as obvious, so we have an even
well defined procedure for the boundary treatment in this case. Finally, recall that
the heat equation, with Neumann conditions, an approximation of the first derivative
the boundary had to be devised, so the derivative boundary condition could be impo:
This was essentially ad hoc, and was not inherently consistent with the remainder of
scheme.

These boundary complications are in principle surmountable in finite difference metho
but, they are completely obviated in B-spline methods, since the B-spline representa
(like any other functional representation) unambiguously defines the near-boundary sche
The only complication is that in B-spline collocation the location of the near-boundary cc
location points that are not attached to knots must be specified. An algorithm based on
maxima of the B-spline functions was proposed, but at the inlet their location affects 1
stability of the scalar advection scheme. By slightly adjusting the location of these col
cation points ((D65Ax) toward the boundary, it is possible to obtain stable representatio
for bandwidth up to 9 (tenth order).

3. On a nonuniform mesh, the spline method can be used directly, without recourse
mapping to a domain with a uniform mesh, as we did for the finite difference case. Th
the method can easily be applied to an arbitrary mesh, for which no analytic mapping
known. Besides, the resulting approximations are simpler, with no explicit metric tern
and in the case of approximating the second derivative, no first derivative term appears
course, one can construct finite difference methods on arbitrary meshes as well, eithe
direct construction or by numerically defined mappings. But the process is cumberso
and for direct construction generally yields schemes that are lower order than the unif
mesh schemes (for the same matrix bandwidth). With the spline methods, the nonunifi
mesh formulation is no different from the uniform mesh.

4. In Sections 4 and 5, the error associated with the spline collocation method was v
behaved and consistent with the results of the Fourier analysis in Section 3. The same ce
be said for the finite difference schemes. For them, the error spectra were more erratic,
a variety of unexplained features. Furthermore, in at least one case (i.e., nonuniform r
heat equation with Neumann conditions), the convergence rates appeared to be the sa
its spline counterpart, inconsistent with the simple Fourier analysis in Section 3.

Thus, when using a high-order spline collocation scheme instead of compact finite
ference with the same bandwidth, one is trading away a potentially higher convergence
and somewhat better resolution in many cases for a more straightforward and robust for
lation. And, as suggested by the results of Section 4 and 5, in complicated situations, tl
is no guarantee that the finite difference method would actually yield the theoretical higl
convergence rate. Finally, Shariff and Moser [34] showed that a B-spline represental
could be used on embedded meshes while preserving the high-order convergence o
schemes. They used a Galerkin formulation, but the same general technique is applic
using collocation. The only uncertainty is the location of the collocation points. The |
spline maxima are a obvious choice. However, the stability of the resulting approximatic
need to be assessed.
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APPENDIX A: THE B-SPLINE AND FINITE-ELEMENT BASIS

Consider a domain [@] divided into N intervals withN + 1 grid points (knots}o,
t1,...tn. N + k B-splines of order k can be generated according to recursion relationsil
[8l,

X —tjk1

i — X .
BI i)+ —~———B'(x), j=12....N+k (Al
1=tk b — b«

BK(x) =
where B}‘(x) is the jth B-spline of ordeik. The B-spline of order 0 is simply the top hat
function

0 1 iftj_y < x <t
Bj (X) = ] (A.2)
0 otherwise.

Close to the boundaries, evaluatiorBff(x) involves “virtual points't;’s outside the range
of knots ( < Oorj > N). In periodic domains, these virtual points are given as

tuyj—L ifj<O
tj_{N“ = (A.3)

tj_N+L ifj>N.

In bounded domains, the virtual points can be placed arbitrarily (either at the bound
or outside the domain). The choice of virtual points determines the near-boundary b
functions, but it does not affect the spline solution space, and thus does not impact
solution. It is most convenient to locate the virtual points at the boundary, thus increas
the multiplicity of knots there, i.e.,

L _Jo ifi<o A
7L i > N. '

Figure 18 shows B-splines in periodic and bounded domains.
Theith derivative of the B-splin(B}‘ is written in terms of lower order B-splines as

dBk  J.
i = 2 B (A5)

I=j-1

where the coefficients are found from the recursion [8]

. ai. — ai.
i+1 _ (g _ ) J0+D il A6
il ( ) t =tk (A.6)

@ _ ®

FIG. 18. Cubic B-splines ina) periodic and(b) bounded domains. Knots are denotedy
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with the starting condition
o =4y (A7)

To implement the Galerkin and finite element B-spline methods it is necessary to evalt
definite integrals of the splines and their derivatives, and/or to evaluate the splines and t
derivatives at specified points in the domain. The recursions described above allow
B-splines to be evaluated. To compute integrals, Gauss quadrature in each interval bety
the knots is used, with enough quadrature points for the resulting integrals to be exact.
calculation procedure is stable to roundoff error [8].

The finite element representation in terms of piecewise polynomials is similar to the spl
representation, differing only in the degree of continuity at the knots (element boundarie
The same recursion relations can be used to define and evalu&lg @inelCy_1),» finite
element basis by introducing a multiplicity of knots at each knot location [8]. FaZ§laand
Cd-1),2 finite elements each knot point has multiplicity@&nd(d + 1)/2, respectively.
Then evaluation of the finite element basis and the Galerkin integrals is accomplishe
discussed above. Note that the finite element basis functions defined here are not those
often used in finite element methods, but they result in the same matrix bandwidth :
necessarily yield identical results, since the finite element solution space is the same.

APPENDIX B: DETAILS OF THE FOURIER ANALYSIS

As discussed in Section 2, when the numerical schemes discussed here are applie
representation of derivative operators is given by

Ma' = Da, (B.1)

where M is the mass matrixD is the derivative matrix (of whatever ordep), is the
vector representing the function (either point values or coefficients)qargdthe vector
representing the derivative.

For the B-splines or the compact finite difference methods in a periodic domain w
a uniform grid, these matrices are both banded and circulant. The mass matrix is
symmetric, while the derivative matrix is symmatric for even derivatives and anti-symmet
for odd derivatives. Théth row of these equations is given by

n n
> omjef = djeiyj, (B.2)

j=-n j=-n

where D + 1 is the bandwidth of the matrices; are the mass matrix elements (witfa
on the main diagonal), ardj are the derivative matrix elements. Timg andd; satisfy

d_;  evenderivatives

—d_; odd derivatives

The values of the matrix elements are determined as described in Appendix A for
B-splines and are given in Tables | and Il for compact finite difference schemes.
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Since the matrices are circulant, the elements ofjtieeigenvector are all given by
el'2t/N ‘whereN is the size of the matrix and we canidentfy= 27 j /N as the wavenumber
of the mode. The eigenvaluagk) are also easily determined. For odd derivatives,

i Y1, 2d; sin(kj)
Mo + >_7_; 2m; coskj)’

ak) = (B.4)

and for even derivatives

do + >_7_; 2d; costkj)
mo + >_7_; 2m; cogkj)’

Ak) = (B.5)

This is how the effective wavenumbers presented in Section 3 were computed for B-spl
and compact finite differences.

As explained in Section 3.1, the accuracy of the eigenfunctions in the B-spline repres
tation is simply the accuracy of representing the complex exponential. This is measure
theL, errore in the representation, measured per length of the periodic domain

2 1 ikx
e — Z oj Bj x)
i

2
_1 B.
» dx, (B.6)

wherexj andB; are the B-spline coefficients and functions, and the wavenukisegyiven

by k = k27 /Ly, with k an integer betweer N/2+ 1 andN/2, whereN is the number
of intervals in the domain. Expanding the integrand and integrating'the '** term, one
obtains

Lx
21 R(Z“J/ ok, (x)dx) + —Zza oq/ B; (X) B (x) dx.
(B.7)
First, note that since the matrices describing the scheme are circulant, the B-spline

efficients are given by; = a€ki2X, where Ax = Ly/N. Then the second term can be
simplified as

Lx . . . . .
> a / e By dx =) adkte Mg = aNg, (B.8)
- 0 -
J J
where

Ly
Bx = / e " By(x) dx. (B.9)
0

The third term in (B.7) is simplified by nothing that the integral is the Galerkin mass matr
and thaekl2* is an eigenvector. Then

Lx L o
ZZ(X}‘O{I/ Bj()B(x)dx =[a?y €My = [a®Na.,  (B.10)
| 0 i

j
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wherei is the eigenvalue of the Galerkin mass matrix that is associated with the eigenve
ekl2x_ The eigenvalue is given by

Ng
Ak = Mgo + Z 2mg coslk Ax, (B.11)
=1

wheremg andng are the elements and half-bandwidth of the Galerkin mass matrix for tt
order splines considered. Finally, the error is written

2 1
2 2
=1-—R —al“ k. B.12
€ Ay @)+ lalh (B.12)
The error is minimized whea = 8 /A, and in that case the error is given by

2
e = |1— P (B.13)
AXAk

The value of8 can in principle be determined analytically, given the piecewise polynomi:
description of the splines. However, it is more convenient to evalgatesing Gauss
guadrature in each interval. The number of quadrature points is selected to give res
accurate to machine precision. This is how the B-spline errors given in Section 3 w
determined.

The analysis of high-order finite elements is somewhat more complicated, since the b
functions are not all simple shifts of each other. Egrelements of ordeo, (j < 0), the
number of degrees of freedom per elemendt is 0 — j, and therefore, there adadifferent
types of basis functions. The entire basis is formed of shifts of thelsasic types. In
a Galerkin method, the derivatives are represented by matrices with several diagonal
d x d blocks, in which the blocks in each diagonal are identical. The matrix can be thoug
of as block circulant or block toeplitz. For finite element representations with continui
up to C-1),2, the matrices are block tridiagonal, and thie block row of the derivative
representatiofMa’ = Da is written

1 1
> Mg, =Y Djdiy. (B.14)

j=-1 j=-1

whereM ; andD; are thed x d blocks on thej diagonal of the mass and derivative matrix,
respectively, andy;"is a vector of lengthd representing the coefficients of tliebasis
functions associated with elementDue to symmetryM _j = MT andD_; = D[ for
even derivatives whil®_; = —D] for odd derivatives.

The eigenvectors of such a system are of the fpeti 24X, whereAx is the element size
andé is an eigenvector of the x d system

D¢ =AM, (B.15)

where
D = Do + D12 4 D_jekax (B.16)
M = Mg+ Mgk 4 M_ e 1kax, (B.17)
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We expect solutions for each-N/2 < k < N/2; each of which will be an approxima-
tion to the the exact derivative eigenvalue and eigenfunction associated with wavenun
ke = k + 27¢/Ax for some—d/2 > ¢ > d/2. The approximate eigenvalues and eigen
functions can thus be determined by solving the matrix eigenvalue problem given in (B.]
but it is then necessary to determine which approximate eigenvalue/eigenvectar, pair (
is associated with whick,. This is accomplished by determining which eigenvector bes
approximates each of the complex exponentials. As was done aboue; éreor is mea-
sured

2 : b —ikex |a|2 L&, T Tk
62=1—A)(R<al§=;¢|/o ek Bg(x)dx)+AXZZM|,-¢|¢j, (B.18)

=1 j=1

whereB(')(x) is the basis function of tydeat element 0. The scale factocan be determined
as before to minimize the error, and the resulting minimum error has the same forrm
Eq. (B.13) with

d Le

Bk = Z@/ e '**Bl(x) dx (B.19)
=1 /0
d d o

A = Z Mij¢|¢T. (B.20)
=1 j=1

By computing this error for eack, — ¢ pair, the best fit to each represented comple;
exponential is determined, and in this way, each eigenvalue is associated with a waver
ber it represents. Comparing them yields the error in the eigenvalue, and (B.13) is
corresponding error in the eigenfunction.

The error shown in Fig. 6 is not the error in the eigenfunction, but the error in the Galerl
representation of the complex exponential, which, for finite elements, is somewhat less
the eigenfunction error. The coefficients of the finite element approximation to the comp
exponentiak’** are of the formpeki2*, whereg is the solution vector to the system

Mé = R, (B.21)
and the right-hand side vect®&is
Ly )
R = / Bl dx. (8.22)
JO
The error in this approximation is given by
62—1—i¢3xR* (B.23)
o AX ’ ’

whered x Ris real and positive becausé is conjugate symmetric and positive definite.
This is the error that was plotted in Fig. 6.
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